

A Heterogeneous Computing
Framework for Computational Finance

Gordon Inggs, David Thomas and Wayne Luk

 Introduction

 Computational Finance

 Forward Financial Framework (F³)

 Experimentation

 Concluding Remarks

Introduction

 Financial Derivatives are a critical
component of modern commerce

 Computationally-intensive pricing models
are used to value derivative products

 The Financial Industry is a major consumer
of high-end computing

Use Case

 Large Institution

 Many Users

 Many Computational Tasks (with
dependencies)

 Heterogeneous Computing Resources

Our Work

 Domain Specific Approach

 Three Challenges:
1) Implementation → Efficient, Automated across

range of platforms
2) Coping with Dependencies → Removal of

redundant computations
3) Partitioning → Domain Knowledge-guided

Partitioning

Computational Finance

 Application Background:

 Forward Looking Derivatives

 Derivative Valuation

 Monte Carlo Algorithm

 Computational Domain:

 Fundamental Concepts

 Domain Relationships

Forward Looking Derivatives

 An option contract grants the right to buy or sell a
defined asset at a defined point in the future, for a
defined price

 A forward-looking option is one with a single
defined point at which it may be exercised

How to value a Derivative

Monte Carlo Algorithm

 A popular method – flexible, robust

 Use a model of the asset to simulate the

underlying asset through its life-time:

 Average the payoff over many sample paths:

dS� � dt� � S dW t

V t	 max �e
� r�T� t � 1

N � k� 0

N � 1
Sk ,T� K ,0�

Computational Finance
Domain Concepts

Computational Finance
Domain Concepts

Domain Dependencies - “Fusion”

Domain Dependencies - “Fission”

Forward Financial Framework (F³)

 Application Framework vs (Domain
Specific Language)

 Supports range of option types, underlying
models and Monte Carlo Pricing

 Multicore CPUs, GPUs (via OpenCL) and
Maxeler FPGA

 Open Source

F³ Fundamentals

F³ Fundamentals (II)

F³ Implementation Flow

F³ Implementation Flow (II)

F³ incorporates Domain Knowledge

 Structure → The framework's objects mirrors
the domain concepts

 General Optimisation → The “fusion” rule is
used to avoid redundant computations

 Partitioning → The “fission” rule allows for
flexibility during partitioning

Experimentation

 3 Claims:
1) Efficient, Automated Implementations
2) Removal of Redundant Computation
3) Domain Knowledge can guide partitioning

1st Claim – Efficient, Automated
Implementations

 Compare against external implementations:

 Kaiserslautern Barrier Option Pricing Benchmark

 Imperial College Asian Option Pricing

 10 Million Simulations, 4096 Points per Sim

 Multicore CPU (8 core Intel Core i7), GPU*

(AMD FirePro W5000) and FPGA (Maxeler
Max3 – Virtex 6)

 Latency and Energy

Implementation Evaluation (Latency)

Implementation Evaluation
(Energy)

2nd and 3rd Claims – Exploiting
Domain Knowledge

 Construct Portfolio out of Kaiserslatuarn
Benchmark + Imperial Asian Option

 Multicore CPU and FPGA, independently and
together

 Latency

Domain Rule Optimisations

Conclusion

 Our approach to Computational Finance as a

Problem Domain

 Contributions:

1) Efficient, Automated Implementations
2) Removal of Redundant Computations
3) Domain-Knowledge Guided Partitioning

 Is Domain Specificity worth it?

Future Work

 More Heterogeneity!

 Runtime Characterisation and Modelling

 End-User Exploration of the Design Space

Kaiserslatuarn Benchmark

Removing Redundant Computations

DK Guided Partitioning

Future Work

